

Population pharmacokinetic/pharmacodynamic models to support dose selection of daratumumab in multiple myeloma patients

P. Chanu (1), M. Marchand (1), L. Claret (1), N. Losic (2), T.A. Puchalski (3), R. Bruno (1)

(1) Pharsight Consulting Services, Pharsight, a Certara[™] Company, Lyon and Marseille, France (2) Genmab, Copenhagen, Denmark, (3) Janssen Research & Development, LLC, Spring House, PA, USA

OBJECTIVE

Daratumumab is a human CD38 monoclonal antibody with broad-spectrum antitumor activity. The aim of this project was to model the pharmacokinetics (PK), pharmacodynamic (PD) M-protein response induced by daratumumab given in patients with double refractory multiple myeloma (MM) from a Phase I/II study. Those patients do not have further established treatment options so far, PK/PD modelling and simulation are used to guide dose selection of daratumumab in MM patients. The exposure-response cascade might be displayed as follows, the work presented will focus on the blue elements.

METHODS

Data were available from 72 MM patients with measurable PK who received daratumumab 0.005 to 16 mg/kg weekly by intravenous infusion. The study (GEN501) was composed of two parts: Part 1 was an open-label, dose-escalation design while Part 2 was an open-label, single-arm design as described below. Figure 1 - Study design

	240	19/kg_3	(+ 3) pl	5			••• Weekly Infusion
Part 1 Open-label,	. 16 mg/kg 3 (+ 3) pts . 8 mg/kg 3 (+ 3) pts				*		Biweekly Infusions
Open-Tabel, Dose Escalation					*		Monthly Infusions
Dose Escalation	4 mg/kg 3 (+ 3)			*	Part 2 Open-label,		o 10 mg Pre-infusion
-	2 marks 3 (+ 3) pts			*	Schedule A	g/kg 16 pts	
	1 mo/kg 3 (+ 3) pts		*	Dose chosen by IDMC			
	ng/kg_3 (+ 3) pts		*		a second second second second		
	g 3 (+ 3) pts	- 2	*			8 mg/kg 6-10 pts	
	L (+ 3) (+ 3) pts	*	-8		Schedule B - 500ml long first full infusion	********	•••••
0.005 mg/kg 1 (-	+ 3) (+ 3) pts 🛛 🛪	ĸ				8 mg/kg 6-10 pts	
+++ Weekly Infusion					Schedule C - No pre-dose, 1000 ml long first full infusio	n ******* * * *	•••••
 10% Pre-infusio 	n					16 mg/kg 20 pts	
* Intermediate do	se levels possible				Schedule D – optional pre-do 1000 ml first two full infusion	58	•••••

A population PK model was developed to derive systemic exposure to daratumumab in patients using non linear mixed effect model and NONMEM 7.

A concentration-driven tumor growth inhibition (TGI) model [1] was used to assess the exposure-response of daratumumab based on time profiles of Mprotein. Model parameters are estimated in NONMEM 7.

M-protein data can be described by an exposure-driven TGI model as follows: Growth rate Kill rate

dMprot $= \textbf{KL} \cdot \textbf{Mprot}(t) - \textbf{KD}(t) \cdot \textbf{Conc}_{dara}(t) \cdot \textbf{Mprot}(t)$

 $KD(t) = KD_0 \cdot e^{-\lambda \cdot t}$ Resistance: exponential decrease of kill rate λ : rate constant for resistance appearance, KD(0)=KD_0

Mprot(0) = BASE Baseline M-Protein

 KD_0 , λ: drug specific parameters BASE, KL: disease/patient specific parameters

-

 $\label{eq:concentration} Concentration, Conc_{dara}(t), was predicted using individual empirical Bayes estimates (EBEs) of the$ nonulation PK model

Model-based simulations were performed to guide dose-selection, 2000 subjects per dosing regimen were simulated across inter-individual variability (random effects) and residual error, uncertainty in parameter estimates was not accounted for.

RESULTS

Study GEN501 is still ongoing and further refinement of models may be needed.

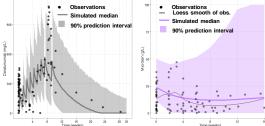
A 2-compartment population PK model with parallel linear and Michaelis-Menten eliminations best described daratumumab pharmacokinetics, as often described for monoclonal antibodies targeting receptors [2].

Table 1 -PK pa	rameters es	timates				
Parameter	Unit	Estimate	SE	RSE (%)	Variability (%)	Shrinkage (%)
Fixed Effects						
CL	L/h	0.00795	0.0011	14		
V1	L	4.73	0.216	5		
V2	L	5.47	0.675	12		
Q	L/h	0.043	0.0123	29		
V _M	mg/h	0.782	0.109	14		
K _M	µg/mL	0.71	0.115	16		
Random Effects	(variance)					
CL		0.377	0.174	46	61	38
V1		0.0875	0.022	25	30	10
V2		0.238	0.106	45	49	10
V _M		0.681	0.144	21	83	22
covariance V1 - V	2 *	0.144	0.0433	30		
Residual variabi	lity (variance))				
Proportional error		0.0492	0.00738	15	22	

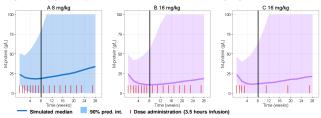
CL: Linear clearance; V1: central volume of distribution; V2: peripheral volume of distribution; Q: inter-compartmental clearance; V.: Maximum rate: K.: Michaelis constant : SE: standard error of estimate: RSE : relative standard error: * correlation V1-V2 = 0.998

Results are overall consistent with a preliminary analysis performed on 25 patients of Part 1 but with a higher linear clearance: 0.19 L/day versus 0.08 L/day in the former analysis and lower V_M and K_M values: 19 mg/day and 0.7 μ g/mL versus 28 mg/day and 1.5 μ g/mL respectively [3]. Inter-individual variability was estimated on CL, V1, V2 and V_M , to 61, 30, 49, and 83% respectively. The residual error was estimated to 22%, including analytical error.

RESULTS


The TGI model for M-protein confirmed a concentration dependent drug efficacy that was suggested in a previous exploratory data analysis [3].

Parameter	Unit	Estimate	SE	RSE (%)	Variability (%) Shrinkage (%
Fixed Effects						
KL	day ⁻¹	0.00515	0.00136	26		
KD ₀	L.mg ⁻¹ .day ⁻¹	0.000229	7.56E-05	33		
λ	day ⁻¹	0.0467	0.00805	17		
BASE1	g.L ⁻¹	3.61	0.781	22		
BASE ₂	g.L ⁻¹	23.7	1.77	7		
FRACTION BAS	SE1	0.201	0.0562	28		
Random Effect	ts (variance)					
KL		1.01	0.367	36	100	11 and 11*
KD ₀		2.05	0.688	34	143	36 and 27*
λ		0.171	0.0816	48	41	90 and 45*
BASE		0.187	0.0438	23	43	9 and 3*
Residual varia	bility (variance)					
Additive error		1.58	1.20	76	1.26 g/L	
Proportional err	or	0.00405	0.00192	47	6.36%	


Model parameters of the exposure driven TGI model and their associated interindividual variability were well estimated. Baseline M-Protein was found to follow a bimodal distribution with respective values of 4 g/L (20% of subjects) and 24 g/L (remaining 80%). M-protein growth rate estimate (KL) was consistent to previous analysis for daratumumab (0.00694 /day using a non-exposure driven simplified TGI model) [3] and similar analyses on dexamethasone [1], tabalumab [4] and carfilzomib [5] (0.004 /day).

Both models are able to reproduce the observed data as illustrated by Figure 2. Figure 2 - Qualifications of PK and TGI models at 16mg /kg

There is clearly a better efficacy at 16 mg/kg (panels B and C) than at 8 mg/kg (A), despite a lower overall dose intensity (Panel C versus A). Figure 3 - Exploratory simulations of daratumumab dosing regimens

Change from baseline at 8 weeks expressed as a ratio is a predictor of survival [6] and confirmed the superiority of 16 mg/kg versus 8 mg/kg:

Median [90% prediction interval]

Panel A 8mg/kg: -0.146 [-0.998;1.606]	Panel B 16mg/kg:	Panel C 16mg/kg:
Observed value in Phase I/II	-0.531 [-1.000;0.944]	-0.391 [-1.000;1.189]
was -0.056 (n=17)		

CONCLUSIONS

Daratumumab was shown to inhibit tumor growth in a concentration-dependent manner in MM patients. PK/PD models are used to optimize dosing regimen and support Phase III design. A dose of 16 mg/kg using an intensive dosing schedule of weekly for 8 doses followed by every 2 weeks for 8 doses then every 4 weeks was found most appropriate in terms of continuous M-protein suppression.

REFERENCES

Jonsson F., Claret L., Knight R., Olesnyckyj M, Jacques C, Rajkumar V.S., Bruno R. A Longitudinal Tumor Growth Inhibition Model Based on Serum M Protein Levels in Patients With Multiple Myeloma Treated by Dexamethasone. PAGE 19 (2010) Abstr 1705.
 Dirks N.L., Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies, Clin Pharmacokinet, 2010 Oct;49 (10):633-59.
 Marchand M., Claret L., Losic N., Puchalski T.A., Bruno, R. Population Pharmacokinetics and [3] Marchand M., Claret L., Losic N., Puchalski T.A., Bruno, R. Population Pharmacokinetics and

[3] Marchand M., Claret L., Losic N., Puchalski T.A., Bruno. R. Population Pharmacokinetics and Exposure-Response Analyses to Support Dose Selection of Daratumumab in Multiple Myeloma Patients, PAGE 22 (2013) Abstr 2668.
[4] Chanu P., Claret L., Bruno R., Radtke D.B., Carpenter S.P., Wooldridge J.E., Cronier D.M. Modeling the PK/IP relationship of an monoclonal anti-BAFF antibody in patients with multiple myeloma : Preliminary analysis of the time-course of serum M-protein and serum Free Light Chains, AAPS NBC (2012).

(2012).
[5] Jonsson F. et al. A tumor growth inhibition model based on M-protein levels in patients with relapsed/refractory multiple myeloma following single-agent carfilzomib use. Clin Pharmacol Ther, 95 (2014) (suppl. 1, abstr. Pil-44), 575.
[6] Bruno R. et al. Simulation of clinical outcome for pomalidomide plus low-dose dexamethasone in patients with refractory multiple myeloma based on week 8 M-protein response. Blood ASH Annual Meeting Abstracts, (2011) 118 (21), 1881.